[1]邱敏,宋友建,丛璐,等.基于层次聚类算法的孔压静力触探土体分类方法及试验研究[J].水文地质工程地质,2019,46(3):117.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.16]
 QIU Min,SONG Youjian,CONG Lu,et al.Soil classification method and experimental research onCPTU based on the hierarchical clustering algorithm[J].Hydrogeology & Engineering Geology,2019,46(3):117.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.16]
点击复制

基于层次聚类算法的孔压静力触探土体分类方法及试验研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年3期
页码:
117
栏目:
工程地质
出版日期:
2019-05-15

文章信息/Info

Title:
Soil classification method and experimental research onCPTU based on the hierarchical clustering algorithm
文章编号:
1000-3665(2019)03-0117-07
作者:
邱敏1宋友建2丛璐3梅年峰4王闫超5
1.中交第二航务工程局有限公司技术中心/交通基础设施智能制造技术交通运输行业研发中心,湖北 武汉430040;2.武汉市勘察设计有限公司,湖北 武汉430022;3.山西大学土木工程系,山西 太原030006;4.武汉地铁集团有限公司,湖北 武汉430079;5.山西省交通科学研究院,山西 太原030006
Author(s):
QIU Min1 SONG Youjian2 CONG Lu3 MEI Nianfeng4 WANG Yanchao5
1.CCCC Second Harbour Engineering Co., Ltd National Enterprise Technology Center/Research and Development Center of Transport Industry of Intelligent Manufacturing Technologies of Transport Infrastructure, Wuhan, Hubei430040, China; 2.Wuhan Geotechnical Engineering and Surveying Co., Ltd, Wuhan, Hubei430022, China; 3.Department of civil engineering, Shanxi University, Taiyuan, Shanxi030006, China; 4.Wuhan Metro Group Co., Ltd, Wuhan, Hubei430079, China; 5.Shanxi Transportation Research Institute, Taiyuan, Shanxi030006, China
关键词:
静力触探聚类算法土层过渡层孔隙水压力
Keywords:
CPTU clustering algorithm soil layer transition layer pore water pressure
分类号:
TU413.5;P642.1
DOI:
文献标志码:
A
摘要:
划分土层、辨别土类是孔压静力触探(CPTU)成果应用的基础。常规的人工分层效果差强人意,而土体行为分类法尽管可靠性高,但无法起到分层效果。引用层次聚类算法,通过对变量的选择、数据的标准化、距离矩阵的生成和类数目的确定,得到了基于层次聚类算法的CPTU数据聚类流程图;结合Robertson和Campanella分类图,提出了基于CPTU测试数据的土层划分与命名规则。采用自主研制的静力触探-钻探一体机,在宁波市轨道交通4号线上展开试验,将土层划分与命名结果与钻孔柱状图展开对比,结果表明:以锥尖阻力qt、摩阻比Rf和孔隙水压力u2作为初始聚类参数的分层图对8个主层的划分与钻孔柱状图几乎一致。其中,以qt-Rf为初始聚类参数的分层图能够识别出单靠qt曲线无法识别的2个薄夹层,体现了Rf的作用;以qt-u2为初始聚类参数的分层图对砂类土划分得过于细致,对黏土划分得过于粗糙,表明u2对砂性土变化过于敏感,对黏性土变化不敏感;以qt-Rf-u2为初始聚类参数的分层图既保留了qt的主要特征,又适当地融入了Rf和u2对土层划分的影响,分层效果最佳。钻孔剖面黏性土的不排水抗剪强度曲线总体上符合土体性质与土层深度的变化规律,从侧面反映了聚类分层图的准确性。
Abstract:
Dividing the soil layer and identifying soil types are the basis for the application of CPTU. The conventional artificial stratification method is not satisfactory, but the soil behavior classification method cannot achieve the stratification effect despite its high reliability. By using the hierarchical clustering algorithm, the flow chart of CPTU soil classification based on hierarchical clustering algorithm is obtained. Through the selection of variables, CPTU test data are proposed. The test was carried out on Line 4 of the Ningbo Rail Transit with a self-developed static standardization of data, the generation of distance matrix and the determination of the number of classes. Combining the Robertson and Campanella classification maps, the soil layer classification and naming rules are based on cone penetration-drilling machine. The results of soil layer division and naming are compared with the borehole histogram. The results show that the division of 8 main layers by stratified graphs with the initial clustering parameters of cone resistance, qt, friction ratio, Rf and pore water pressure, u2, is almost identical with the drilling column. The stratified graph with qt- Rf as the initial clustering parameter can identify two thin layers which cannot be identified by qt curve alone, which reflects the role of Rf; the stratified graph with qt-u2 as the initial clustering parameter is too detailed for sandy soil classification and too rough for clay classification, indicating that u2 is insensitive to clay change and is not sensitive to sandy soil change. The stratified graph with qt- Rf-u2 as the initial clustering parameter not only retains the main characteristics of qt, but also incorporates the effects of Rf and u2 on soil stratification appropriately, and the stratification effect is the best. The undrained shear strength curve of cohesive soil in the borehole section generally conforms to the variation law of soil properties and soil depth, and reflects the accuracy of clustering stratification map from the side.

参考文献/References:

[1]马长波,覃静.孔压参数在静力触探试验中的应用研究[J].人民长江,2010,41(15):75-78.
[MA C B, QIN J. Application of pore pressure parameters in cone penetration test[J]. Yangtze River,2010, 41(15):75-78.(in Chinese)]
[2]蔡国军,刘松玉,童立元,等.多功能孔压静力触探(CPTU)试验研究[J].工程勘察,2007(3):10-16.
[CAI G J, LIU S Y, TONG L Y, et al. Experimental study on multi-functional pore pressure penetration test (CPTU) [J]. Geotechnical Investigation & Surveying, 2007(3): 10-16. (in Chinese)]
[3]孟高头,张德波,刘春宇,等.用孔压静力触探和室内固结试验求取土的固结系数的对比研究[J].水文地质工程地质,2016,47(21):18-20.
[MENG G T, ZHANG D B, LIU C Y, et al. Comparative study on consolidation coefficient of soil obtained by pore pressure penetration test and laboratory consolidation test[J]. Hydrogeology & Engineering Geology, 2016, 47(21):18-20. (in Chinese)]
[4]Rogiers B, Mallants D, Batelaan O, et al. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer[J]. PLOS ONE,2017,12(5): 167-179.
[5]Senneset K, Sandven R, Janbu N. Evaluation of soil parameters from piezocone tests [J]. Transportation Research Record, 1989, 35(12): 456-468.
[6]张诚厚, Rosenbr G, Greeuw W F, et al.一种用孔压圆锥贯入试验测定软土的新分类图[J].水利水运科学研究,1990(4): 427-438.
[ZHANG C H, Rosenbr G, Greeuw W F, et al. A new classification diagram for determining soft soil by hole pressure cone penetration test[J]. Scientific Research on Water and Water Transportation, 1990(4): 427-438. (in Chinese)]
[7]Robertson P K. Interpretation of cone penetration test-a unified approach [J]. Can. Geotech. J.,2009(46): 1337-1355.
[8]Eslami A, Fellenius B H. Pile capacity by direct CPT and CPTu methods applied to 102 case histories [J]. Canadian Geotechnical Journal, 1997, 34(6): 886-904.
[9]Robertson P K, Campanella R G, Gillespie D, et al. Use of piezometer cone data, Use of in situ tests in geotechnical engineering[C]//ASCE, 1986: 1263-1280.
[10]Wilks D S. “Cluster analysis” International geophysics[M]. Academic press, 2011,100: 603-616.
[11]Facciorusso J, Uzielli M. Stratigraphic profiling by cluster analysis and fuzzy soil classification from mechanical cone penetration tests [C]//Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization,2004:905-912
[12]Kaufman L, Rousseeuw P J. Finding Group in Data: An Introduction to Cluster Analysis[M]. Hoboken, New Jersey: John Wiley & Sons, Inc. Publication,2012.
[13]Neter J, Wasserman W, Kutner M H. Applied Linear Statistical Models: Regression Analysis of Variance and Experimental Designs[M]. Boston, Massachusetts: Richard D. Irwin, Inc. Publication,1990.
[14]GB 50021—2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2009.
[GB 50021—2001 Code for investigation of geotechnical engineering[S]. Beijing: China Construction Industry Press, 2009. (in Chinese)]
[15]肖先波,李波,王婷,等.大应变静力触探数值模拟及锥形因子影响因素分析[J].水文地质工程地质,2018,45(2): 70-76.
[XIAO X B, LI B, WANG T, et al. Large-strain numerical simulation for cone penetration and analysis of influence factors for the cone factor[J]. Hydrogeology & Engineering Geology,2018,45(2):70-76. (in Chinese)]
[16]陈维家,汪火旺.静力触探中土层界面效应试验研究[J].水文地质工程地质,2003,30(2):25-27.
[CHEN W J, WANG H W. Experimental study on soil interface effect in static cone penetration test[J]. Hydrogeology & Engineering Geology, 2003, 30 (2):25-27. (in Chinese)]
[17]Campannella R G, Robertson P K. Current Status of the Piezometer Test, Penetration Testing[M]. Balkema, Rotterdam:I Sopt-1, 1988.

相似文献/References:

[1]杜广印,刘松玉.排水粉喷桩加固软土地基桩周土体强度变化规律[J].水文地质工程地质,2010,37(3):87.
 DU Guang-yin,LIU Song-yu.Strength change feature of surrounding soil in the vicinity of DJM columns in ground improved by DJM-PVD combined method[J].Hydrogeology & Engineering Geology,2010,37(3):87.
[2]肖先波,李波,王婷,等.大应变静力触探数值模拟及锥形因子影响因素分析[J].水文地质工程地质,2018,45(02):70.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.11]
 XIAO Xianbo,LI Bo,WANG Ting,et al.Large-strain numerical simulation for cone penetration and analysis of influence factors for the cone factor[J].Hydrogeology & Engineering Geology,2018,45(3):70.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.11]

备注/Memo

备注/Memo:
收稿日期: 2018-10-11; 修订日期: 2018-11-21
基金项目: 中国地质调查局“十二五” 重点大调查项目(天然气水合物钻探地层流体取样与原位测试系统研发,GZH20160060202)
第一作者: 邱敏(1988-),男,博士,研究方向为岩土工程测试及数据处理。E-mail:qiumeiwen180_75@sina.cn
更新日期/Last Update: 2019-05-15