[1]熊小锋,施小清,吴剑锋,等.弹塑性变形条件下抽水引起的地面沉降三维数值模拟[J].水文地质工程地质,2017,44(2):151-159.
 XIONG Xiaofeng,SHI Xiaoqing,WU Jianfeng,et al.3D numerical simulation of elasto-plastic land subsidence induced by groundwater pumping[J].Hydrogeology & Engineering Geology,2017,44(2):151-159.
点击复制

弹塑性变形条件下抽水引起的地面沉降三维数值模拟()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
44卷
期数:
2017年2期
页码:
151-159
栏目:
OA栏目
出版日期:
2017-03-15

文章信息/Info

Title:
3D numerical simulation of elasto-plastic land subsidence induced by groundwater pumping
作者:
熊小锋施小清吴剑锋吴吉春
南京大学地球科学与工程学院,江苏 南京210023
Author(s):
XIONG Xiaofeng SHI Xiaoqing WU Jianfeng WU Jichun
School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
关键词:
TOUGH2-FLAC3D地面沉降弹塑性变形脉冲抽水
Keywords:
TOUGH2-FLAC3Dland subsidenceelastic-plastic modelpulse
分类号:
P642.26
文献标志码:
A
摘要:
基于部分耦合原理,采用TOUGH2和FLAC3D建立抽水引起的三维地面沉降弹塑性模型,模型中综合考虑土体的弹塑性变形特征、渗流-应力的双向耦合作用以及参数的非线性,探讨了持续抽水和脉冲抽水两种抽水过程中地面沉降发展演化过程。研究结果表明:(1)集中抽水停止后地面沉降会发生回弹,抽水中心沉降量不断减小。由于水平方向存在水力梯度,地下水继续向地下水位漏斗中心渗流从而导致沉降漏斗的范围仍继续扩大;(2)脉冲抽水导致土体的孔隙水压力、渗透系数以及沉降量均呈周期性波动变化,地面沉降会局部回弹,但总体仍随着抽水的持续,沉降量不断增加;(3)在抽水量相同前提下,对比持续抽水与脉冲抽水两种方式引发的塑形沉降量可知,抽水速率小、脉冲式多次开采导致的塑性沉降量较小,持续抽水的抽水速率越小、脉冲抽水间隔越短越有利于控制地面沉降。研究成果为地面沉降数值模拟提供了一种新方法,其中算例研究能为抽水条件下地面沉降的控制提供参考。
Abstract:
In this paper, TOUGH2 and FLAC3D are sequentially executed and linked to solve partial coupled three-dimensional land subsidence model, which considers the elastic-plastic deformation behavior, coupled hydro-mechanical effect and the varying nonlinear parameters. The evolution of land subsidence due to constant pumping and pulse pumping is compared to study the strategy of land subsidence control. Results show that: (1) Settlements rebound near the pumping well when stopping pumping, but the land subsidence cone continues enlarge. The plastic deformation can’t recover; (2) Pulse pumping results in fluctuation of the pore pressure, parameters and deformation, but they still dwindle globally; (3) The constant pumping strategy was compared with the pulse pumping with the same pumpage. Under this condition, the plastic deformation decrease with lower pumping rate and small intervals. This is mainly due to the fact that the groundwater level can recover rapidly with lower pumping rate and small intervals. This research provides a new method to simulate land subsidence, and the case study would contribute to the control of land subsidence.

参考文献/References:

[1]薛禹群.论地下水超采与地面沉降[J].地下水,2012, 34(6):1-5.
[XUE Y Q. Discussion on Groundwater overexploitation and ground settlement[J]. Ground Water, 2012, 34(6):1-5. (in Chinese)]
[2]李培超. 地面沉降变形非线性完全耦合数学模型[J]. 河海大学学报(自然科学版), 2011(6):665-670.
[LI P C. A nonlinear fully coupled mathematical model for land subsidence[J]. Journal of Hohai University(Natural Sciences), 2011, 39(6):665-670. (in Chinese)]
[3]张弘怀,郑铣鑫,唐仲华,等. 宁波平原地面沉降全耦合数值模拟研究[J]. 水文地质工程地质,2013, 40(4):77-82
[ZHANG H H, ZHENG X X, TANG Z H,et al. A study of full coupling numerical simulation of land subsidencein the Ningbo plain[J]. Hydrogeology & Engineering Geology, 2013, 40(4):77-82. (in Chinese)]
[4]陈兴贤,骆祖江,金玮泽,等. 高层建筑荷载、地下水开采与地面沉降耦合研究[J]. 应用基础与工程科学学报,2015, 23(2):285-298.
[CHEN X X, LUO Z J, JIN W Z,et al. Study of high-rise building load,groundwater seepage and land subsidence[J]. Journal of Basic Science and Engineering,2015, 23(2):285-298. (in Chinese)]
[5]Zhou X L, Huang K Y, Wang J H. Numerical simulation of groundwater flow and land deformation due to groundwater pumping in cross-anisotropic layered aquifer system[J]. Journal of Hydro-environment Research, 2017,14:19-33.
[6]Kim J. Sequential methods for coupled geomechanics and multiphase flow[J]. Dissertations & Theses-Gradworks. 2010.
[7]Rutqvist J, Wu Y S, Tsang C F, et al. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002,39(4):429-442.
[8]Rutqvist J, Tsang C-F. TOUGH-FLAC: a numerical simulator for analysis of coupled thermal-hydrologic-mechanical processes in fractured and porous geological media under multi-phase flow conditions[C]// Proceedings of the TOUGH Symposium. 2003.
[9]Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers & Geosciences,2011,37(6): 739-750.
[10]Rutqvist J, Blanco Martin L, Mukhopadhyay S, et al. Modeling coupled THMC processes and brine migration in salt at high temperatures[R]. Berkeley:Ernest Orlando Lawrence Berkeley National Laboratory, 2014.
[11]Pruess K, Oldenburg C, Moridis G. TOUGH2 user’s guide version 2[M]. Berkeley :Lawrence Berkeley National Laboratorym,1999.
[12]施小清, 张可霓, 吴吉春. TOUGH2软件的发展及应用[J]. 工程勘察,2009(10):29-34.
[SHI X Q, ZHANG K N, WU J C. The history and application of TOUGH2 code[J]. Geotechnical Investigation &Surveying,2009(10):29-34.(in Chinese)]
[13]苏晨, 崔亚莉, 邵景力. 基于理论法的地面沉降数值模型进展[J]. 水文地质工程地质,2014, 41(6):147-152.
[SU C, CUI Y L, SHAO J L. Advances in numerical models of land subsidence based on comprehensive theories[J]. Hydrogeology & Engineering Geology,2014, 41(6): 147-152. (in Chinese)]
[14]杨林权. 荷载和地下水开采作用下的地面沉降数值模拟及应用研究[D]. 武汉: 中国地质大学, 2014.
[YANG L Q. Numerical simulation of land subsidence considering both effects of load and groundwater exploitation and applications[D]. Wuhan: China University of Geoscience, 2014. (in Chinese)]
[15]Helm D C. Horizontal aquifer movement in a Theis‐Thiem confined system[J]. Water Resources Research, 1994,30(4):953-964.
[16]刘红云. 抽水引起含水层水平运动及与地裂缝的关系研究[D]. 西安: 长安大学, 2007.
[Horizontal aquifer movement induced from groundwater Pumping and its relation with ground fissure[D]. Xi’an: Chang’an University, 2007. (in Chinese)]
[17]王哲成, 张云. 地下水超采引起的地裂缝灾害的研究进展[J]. 水文地质工程地质,2012, 39(2):88-93.
[WANG Z C, ZHANG Y. Advances of research on the earth fissure induced bygroundwater over-exploitation[J]. Hydrogeology & Engineering Geology, 2012, 39(2):88-93. (in Chinese)]
[18]陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社; 2011.
[CHEN Y M, XU D P. Theory and Engineering Application for FLAC/FLAC3D[M]. 2nd ed. Beijing: China Water & Power Press, 2011. (in Chinese)]
[19]ITASCA FD. Version 3.1 User’s Manual[M]. Minneapolis: Itasca Consulting Group, 2005.
[20]Davies J, Davies D. Stress-dependent permeability: characterization and modeling[C]//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1999.
[21]汤连生, 桑海涛, 罗珍贵, 等. 土体抗拉张力学特性研究进展[J]. 地球科学进展,2015, 30(3):297-309.
[TANG L S, SANG H T, LUO Z G. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science,2015, 30(3):297-309. (in Chinese)]
[22]陈崇希, 裴顺平. 地下水开采一地面沉降模型研究[J]. 水文地质工程地质,2001,28(2):5-8.
[CHEN C X, PEI S P. Groundwater extract and land subsidence model research[J]. Hydrogeology & Engineering Geology, 2001,28(2):5-8. (in Chinese)]
[23]房浩,何庆成,徐斌,等.沧州地区地面沉降灾害风险评价研究[J].水文地质工程地质, 2016,43(4):159-164.
[FANG H, HE Q C, XU B, et al. A study of risk assessment of the land subsidence in Cangzhou[J].Hydrogeology & Engineering Geology,2016,43(4):159-164. (in Chinese)]

相似文献/References:

[1]陈荣波,束龙仓,朱兴贤,等.全面禁采以来锡西澄南地区地面沉降动态特征分析[J].水文地质工程地质,2011,38(5):80.
 CHEN Rong-bo,SHU Long-cang,ZHU Xing-xian,et al.Dynamic analysis of land subsidence in the Xibei-Chengnan area since the restriction and prohibition of groundwater pumping[J].Hydrogeology & Engineering Geology,2011,38(2):80.
[2]叶俊能,郑铣鑫,侯艳声,等.宁波轨道交通规划区域地面沉降特征分析及监测[J].水文地质工程地质,2010,37(3):107.
 YE Jun-neng,ZHENG Xian-xin,HOU Yan-sheng.Characteristic analysis of land subsidence and monitoring in the planning area of the Ningbo rail traffic[J].Hydrogeology & Engineering Geology,2010,37(2):107.
[3]姜衍祥,朱庆川,王威,等.地面沉降在闸涵工程运行中引起的经济损失的探讨[J].水文地质工程地质,2008,35(1):126.
 JIANG Yan-xiang,ZHU Qing-chuan,WANG Wei.A discussion of the economic lose caused by land subsidence during the floodgate operation[J].Hydrogeology & Engineering Geology,2008,35(2):126.
[4]李国和,荆志东,许再良,等.京沪高速铁路沿线地面沉降与地下水位变化关系探讨[J].水文地质工程地质,2008,35(6):90.
 LI Guo-he,JING Zhi-dong,XU Zai-liang.A discussion of the correlation between land subsidence and groundwater level variation along the Jinghu high speed railway[J].Hydrogeology & Engineering Geology,2008,35(2):90.
[5]龚士良,李采,杨世伦,等.上海地面沉降与城市防汛安全[J].水文地质工程地质,2008,35(4):96.
 GONG Shi-liang,LI Cai,YANG Shi-lun.Land subsidence and urban flood prevention safety in Shanghai[J].Hydrogeology & Engineering Geology,2008,35(2):96.
[6]朱锦旗,焦珣,于军,等.基于GA-ANN的苏锡常地裂缝危险性评价[J].水文地质工程地质,2008,35(4):106.
 ZHU Jin-qi,JIAO Xun,YU Jun,et al.Evaluation of earth fissures based on GA-ANN coupling model in the Suzhou-Wuxi-Changzhou area[J].Hydrogeology & Engineering Geology,2008,35(2):106.
[7]王哲成,张 云.地下水超采引起的地裂缝灾害的研究进展[J].水文地质工程地质,2012,39(2):88.
 WANG Zhe-cheng,ZHANG Yun. Advances in research on the earth fissure induced by groundwater over-exploitation[J].Hydrogeology & Engineering Geology,2012,39(2):88.
[8]杜钊锋,宫辉力,王 洒,等.短时空基线PS-InSAR在北京地面沉降监测中的应用[J].水文地质工程地质,2012,39(5):116.
 DU Zhao-feng,GONG Hui-li,WANG Sa,et al.Application of small spatiotemporal baseline PS-nSAR to the study of land subsidence in Beijing[J].Hydrogeology & Engineering Geology,2012,39(2):116.
[9]主灿,张云,何国峰,等.天津滨海新区抽水引起地面沉降现场试验研究[J].水文地质工程地质,2018,45(02):159.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.24]
 ZHU Can,ZHANG Yun,HE Guofeng,et al.In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J].Hydrogeology & Engineering Geology,2018,45(2):159.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.24]
[10]李莎,成建梅,宫辉力.基于变渗透系数的地下水开采-地面沉降三维模拟研究[J].水文地质工程地质,2018,45(03):14.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.02]
 LI Sha,CHENG Jianmei,GONG Huili.Three dimensional simulation of groundwater exploitation and land subsidence based on variable permeability[J].Hydrogeology & Engineering Geology,2018,45(2):14.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.02]

备注/Memo

备注/Memo:
收稿日期: 2016-10-08; 修订日期: 2017-01-11
基金项目: 国家自然科学基金项目(U1503282, 41672229,41172206)
第一作者: 熊小锋(1991-),男,硕士研究生,主要研究方向为地面沉降数值模拟。E-mail:xiongxf_2016@163.com
通讯作者: 施小清(1979-),男,副教授,主要从事地下水数值模拟的教学和科研工作。E-mail:shixq@nju.edu.cn
更新日期/Last Update: 2017-06-07